EXECUTIVE SUMMARY

THE EFFECT OF A WATER FLOW TIMER ON FOODSERVICE FOOD HANDLERS’ HANDWASHING BEHAVIOR

Purdue University
Avery Foodservice Research Laboratory

Carl Behnke, PhD, Barbara Almanza, PhD, RDN, EunSol Her, MS

December 2017
1. INTRODUCTION

Importance of proper handwashing

- Poor personal hygiene is one of five risk factors contributing to foodborne illness in foodservice and retail food stores, and thus proper handwashing is critical (FDA, 2010, 2017; Green et al., 2006, 2007).

- However, compliance with proper handwashing is still problematic (e.g., only 24% in full service restaurants; FDA, 2010).

Passive/indirect intervention strategies for behavioral change

- Mounting evidence suggests that classical education strategies of knowledge transfer are not sufficient to drive behavioral change (Evans & McCormack, 2008; Schroeder et al., 2016).

- Instead, *active/direct* interventions involving motivational or behavior-based training (Pellegrino, Crandall, O'Bryan, & Seo, 2015; Yu, Neal, Dawson, & Madera, 2017) are gaining interest and found effective in improving hand hygiene practices.

- In comparison, *passive/indirect* interventions with only a subtle change in the environment or system (FDA, 2010; Green et al., 2007; Pellegrino et al., 2015; Viator, Blitstein, Brophy, & Fraser, 2015) may also help behavioral changes with less time/cost commitment and fewer financial obligations for restaurant operations.

Water flow timer

- Sufficient duration (≥ 20 sec; ServSafe®) is an important component in proper handwashing to reduce the number of microorganisms on hands (CDC, 2015).
The presence of a water flow timer may lead food handlers to be more involved in a proper handwashing duration by providing immediate, continuous, real-time, and personalized feedback.

1.1. Purpose of the study

The purpose of this study was to address whether:

(1) the presence of a water flow timer improves foodservice food handlers’ handwashing behavior;

(2) the presence of a water flow timer in conjunction with an informational poster facilitates the effect; and

(3) the effects are affected by high consumer volume.

2. METHODS

Site Selection and Sample

- A student-operated *a la carte* restaurant on a large Midwestern university campus was the site of the experiment.

- The intervention hand sink was centrally located within the kitchen and was most frequently used.

- Sample included sophomore and senior hospitality students (*n* = 70) and non-student employees (*n* = 9), more than 90% of whom were certified with ServSafe® Food Protection Manager Examination.

Design/Instruments/Data Collection

- A within-group, multiple-intervention experiment was conducted over the course of four weeks from September 12th to October 6th, 2017.
Multiple-intervention included:

- Week 1) baseline phase;
- Week 2) a single intervention phase using a water flow timer (SaniTimer®);
- Week 3) multiple intervention phase using the water flow timer and an informational poster (developed based on ServSafe®); and
- Week 4) withdrawal phase.

The water flow timer was attached to a faucet and had a digital display face approximately 2” in diameter, which enabled food handlers to observe a thirty second countdown on a display that begins when the water starts flowing and continues until thirty seconds have passed.

The informational poster highlighted proper five-step handwashing procedures and the minimum duration of scrubbing with soap as well as total five steps.

Data were collected from Tuesday to Friday, 7:30am to 2:30pm, using a small motion-detecting video camera (AUKEY DR-01 Dash Cam) that included a date and time stamp for recordings.

The motion-detecting video camera was installed on the top of a sink with the lens directed at the faucet only, thereby capturing handwashing instances without person-identifiable information.

Behavioral measures

- **Quantitative**
 - Frequency of handwashing instances
 - Overall duration of handwashing instances
• Qualitative
 - Compliance to proper scrubbing duration (≥ 10 sec or not)
 - Compliance to proper five-step handwashing sequence (wetting, soaping, scrubbing, washing, and drying)
 - Compliance to complete proper handwashing (meeting both proper scrubbing duration and five-step handwashing sequence or not)

3. RESULTS

• A total of 839 handwashing instances were observed over 112 hours (see Table 1 for detailed frequencies and descriptive statistics of all measures).

• The analysis of variance (ANOVA) results showed that frequency of handwashing instances did not significantly vary across the weeks ($p = .43$).

• The ANOVA results showed that, despite the highest consumer traffic, duration of handwashing instances significantly increased in week 2 over week 1 (14.9 sec vs. 11.6 sec; $p = .002$) and significantly dropped in week 4 in comparison to week 3 (12.8 sec vs. 15.7 sec; $p = .02$).

• Although not definitive, the logistic regression results suggested that the compliance rates for proper scrubbing duration ($p = .095$) and complete proper handwashing varied across the weeks ($p = .071$; i.e., higher percentages in week 2 and week 3 than in week 1 and week 4), and that the compliance rate for following the proper five-step sequence increased in week 2 over week 1 (49.1% vs. 40.7%; $p = .076$) despite the high consumer volumes in week 2 and week 3.
• Point-biserial correlation results showed that increased handwashing duration was positively associated with proper scrubbing duration ($r_{pb} = .51$, $p < .001$), proper sequence ($r_{pb} = .41$, $p < .001$), and complete proper handwashing ($r_{pb} = .45$, $p < .001$).

Table 1. Handwashing behavioral measures and consumer volume

<table>
<thead>
<tr>
<th>Week</th>
<th>Frequency$^{ns.}$</th>
<th>Duration***</th>
<th>Proper scrubbing duration†</th>
<th>Proper sequence$^{ns.}$</th>
<th>Complete proper handwashing†</th>
<th>Consumer volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>204</td>
<td>11.6</td>
<td>8.3%</td>
<td>40.7%</td>
<td>6.4%</td>
<td>152</td>
</tr>
<tr>
<td>2</td>
<td>234</td>
<td>14.9</td>
<td>12.0%</td>
<td>49.1%</td>
<td>10.7%</td>
<td>244</td>
</tr>
<tr>
<td>3</td>
<td>186</td>
<td>15.7</td>
<td>11.3%</td>
<td>39.8%</td>
<td>8.1%</td>
<td>187</td>
</tr>
<tr>
<td>4</td>
<td>215</td>
<td>12.8</td>
<td>5.6%</td>
<td>46.0%</td>
<td>4.2%</td>
<td>158</td>
</tr>
</tbody>
</table>

Notes. Week 1. Baseline; Week 2. Timer; Week 3. Timer + Poster; Week 4. Withdrawal. Duration is in seconds. Complete proper handwashing indicates compliance to both proper sequence and scrubbing. In the consumer volume, one day of the week 2 included special banquet for 100 consumers, greater than an average daily volume. Superscripts indicate the significance testing across four weeks. $^{***}p < .001$. $^\dagger p < .1$. $^{ns}p \geq .1$.

4. CONCLUSION

• This study provided reliable and quantifiable data about food handlers’ handwashing practices.

• Findings provided useful information about whether passive/indirect intervention strategies in handwashing practices such as the mere presence of a water flow timer are effective in driving behavioral changes of food handlers.

• If coupled with an active/direct training for providing the rationale, the effect of the passive/indirect intervention in its constant reinforcement may become even stronger.
NOTES

1. This report is an executive summary of a manuscript in preparation for journal submission.

2. The authors acknowledge the support provided by SaniTimer®.
References

